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Abstract

It is a fairly common issue, in the wide context of Web Crawling,
of having our crawler banned or even actively attacked while perform-
ing its operations. In extreme cases, it might be even possible to have
our crawling target inclined to take legal (or extra-legal) actions against
us, due to information retrieval from restricted domains. This thesis
project aims to solve such issues, presenting a novel technique to add
an anonymity layer to our web crawler while making it resilient with
respect to direct attacks. A software architecture is presented, giving a
full fledged, modular, anonymous and flexible test environment.
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Chapter 1

Introduction

Around the 40% of the entire world population has an Internet connec-
tion today, and we expect this number to grow in the near future. As
more people get connected every day, Internet established a real revolu-
tion for information exchange. In this fast-paced context, it has become
crucial to protect data from potential attacker and/or eavesdropper. To
address this problem, security measures have to be taken into account.
In order to secure our system we must ensure three particular properties:

• Confidentiality : protecting data from being accessed from wrong
parties. Encryption, authentication, biometric verification ecc. are
the most common methods to ensure confidentiality.

• Integrity : ensuring data trustworthiness guaranteeing it has not
been actively tampered. Integrity is met relying on checksums.

• Availability : maintaining the system in a state such that data can
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constantly be accessed performing hardware and software mainte-
nance. Backups, RAID, redundancy, high-availability clusters ecc.
are usual methods to guarantee availability.

However, even if we might consider a system guaranteeing this three
characteristics "secure", there is a fourth property that is not covered
from the CIA model: Anonymity. By Anonymity we refer to the capa-
bility of a system to guarantee the non-disclosure of the user identity.
Indeed, Anonimity is the main subject of this thesis, in the specific con-
text of web crawlers.
A web crawler is an internet bot which automatically retrieves informa-
tions from websites, social networks ecc. It is a very frequent scenario
that a web crawler retrieves confidential information, especially in the
context of intelligence operations. Therefore, it becomes crucial to pro-
tect its identity. In the case where no anonymity measures are taken, the
undesiderable effects might result in a simple ban, or, in extreme cases,
active attacks or (il)legal coercions.
A software architecture is proposed, realized as a perfect environment for
anonymous web crawler, designed to be resilient with respect to active
attacks, leaving no trace of previously accomplished tasks.
An introduction to anonymous networks will follow, focusing on a spe-
cific network named Tor in particular. Furthermore, an experimental
evaluation of Tor is given, in order to have a clear picture of how the
proposed architecture will perform.
Discussing about Tor, a threat model will be covered, to picture an hy-
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pothetical adversary attempting to attack the crawler.
This work ends discussing the results achieved, and the actual limitation
of the current architecture version.

5



1.1 Anonymous Networks

"An anonymous P2P communication system is a peer-to-peer distributed
application in which the nodes or participants are anonymous or pseudony-
mous. Anonymity of participants is usually achieved by special routing
overlay networks that hide the physical location of each node from other
participants." [1]

Considering the modern network architecture based on the OSI model, it
is known that the user identity is univocally identified by his IP address,
according to the TCP/IP Internet protocol suite. Hence, to properly
ensure anonymity, the user IP address must be hidden.
One might easily assess how confidentiality does not concern the obfusca-
tion of the IP address, since its encryption would make packet forwarding
(routing) impossible.
This is where networks like Tor come into play, by providing a network
infrastructure that guarantees anonymity (under certain circumstances)
which is totally transparent with respect to the TCP/IP stack. It comes
natural to think about "why" would be so important to hide our iden-
tity while surfing the web. The answer is obvious in the case that its
disclosure might be dangerous for the user (whistleblowers, dissidents
ecc.), but why would the average user might want to protect his iden-
tity? There are many answers to this question. Without deepening in
this topic (which would take a whole paper) we simply remind that "If
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You’re Not Paying for It; You’re the Product", in the sense that many
companies are actually interested in collecting your personal data while
you navigate the web with or without your consensus (and they success-
fully do it on a daily basis).
In the next chapter an insight of the Tor network is presented, introduc-
ing the basic concepts to understand in order to extensively comprehend
its limitations.
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Chapter 2

Tor Architecture and
Internals

Tor (The Onion Router) is a network that aims to guarantee anonymity
to the user. At the base of its functioning there is a number of com-
puter nodes (Tor relays) that take care of delivering network packets to
the final destination. Therefore the information firstly passes through a
number of Tor relays before reaching the destination, so that the receiver
is not able anymore to know who is the original sender. Before trans-
mitting a packet, the user willing to take advantage of Tor, establishes
a Tor circuit by randomly choosing three Tor relays. After the circuit
has been set, the user encrypts the network packet three times, using the
public keys of the circuit nodes (starting from the last relay). As soon as
a circuit relay receives a packet it simply decrypts the top layer (it peels
the onion) using its private key and successively forwards the packet to
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the next relay. This guarantees anonymity, since the intermediate nodes
are only able to decrypt the top layer of the packet, being unable to
trace back the original sender and discovering the actual end-point of
the communication.
Tor allows to establish an arbitrary-length circuit. However, to reduce
the performance overhead, the default length is set to the minimum num-
ber which guarantees anonymity, that is 3.
It is not known if a longer number actually improves security/perfor-
mance balance. As Hotpets-Bauer paper states:

"Choosing a path length for low latency anonymous networks that opti-
mally balances security and performance is an open problem." [2]

To further increase anonymity, Tor shuffles the circuit every 10 min-
utes.
One might compare Tor to the real world by imaging to walk from A
to B in a very crowded place, changing direction multiple times before
reaching the final destination.
It comes natural to think how performance is affected by this architec-
ture. To partially solve this issue, Tor relays are chosen based on their
bandwidth capabilities. As we will see, this can represent a vulnerability
which might be exploited to de-anonymize users.

As mentioned in the official Tor design document:
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Figure 2.1: Tor Scheme

"This second-generation Onion Routing system addresses limitations in
the original design by adding perfect forward secrecy, congestion con-
trol, directory servers, integrity checking, configurable exit policies, and
a practical design for location-hidden services via rendezvous points. Tor
works on the real-world Internet, requires no special privileges or ker-
nel modifications, requires little synchronization or coordination between
nodes, and provides a reasonable tradeoff between anonymity, usability,
and efficiency." [3]

Under a user-perspective, each user uses a local software called Onion
Proxy, which takes care of managing Tor connections. Each onion router
maintains a private long-term key and a public short-term key, according
to the Diffie-Helmann approach. To provide confidentiality, the private
key is used to sign TLS certificates, while the short-term keys are used
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when communicating between onion routers. It is worth mentioning that
the short-term keys are periodically rotated, to further increase security.

Figure 2.2: Tor Cell

Tor relays exchange fixed-size messages named cells via TLS connec-
tions. Cells have a size of 512 bytes, and they are of two types: control
cells and relay cells, both consisting of a payload and a header. A relay
cell carry end-to-end data, while a control cell is used to give instructions
to the node that receives it. In particular there are 4 types of control
commands for a control cell:

• padding : currently used for keepalive.

• create and created : used to set up/acknowledge a new circuit.

• destroy : used to tear a circuit down.

There are 10 types of commands for a relay cell:

• relay data: for data flowing down the stream.

• relay begin: to open a stream.
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• relay teardown: to close a stream.

• relay connected : to notify the success of a connection opening.

• relay extend : to extend a circuit by a hop

• relay extended : to acknowledge a relay extend command.

• relay truncate: to tear down only a part of the circuit.

• relay truncated : to acknowledge a relay extended command.

• relay sendme: for congestion control.

• relay drop: used to implement long-range dummies.

The header is composed of several fields:

• Circuit ID (circID): since many circuits are associated to a single
TLS connection, each cell contains a circID number wich univocally
identifies the circuit to which they are associated to.

• Command (CMD): the operation to execute with the cell payload.

• Stream ID (streamID): univocally identifies a stream belonging to
a certain circuit (identified by circID).

• Digest : checksum to ensure end-to-end data integrity.

• Length (Len): size of payload data.
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While a relay cell contains all the above mentioned metadata, only the
circuit ID and a command are contained into a control cell.
The actual establishment of a circuit is accomplished taking advantage
of Diffie-Hellman exchange, sending control and relay cells among the
involved nodes. For a deep explanation of how the circuit is constructed
please refer to the Tor design document. It is worth mentioning that all
the TCP requests/responses are accomplished using the SOCKS proto-
col, which makes possible the existence of TCP streams across multiple
proxies.
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2.1 Threat Model

It is important, under the anonymity point of view, to define what are the
actual capabilities of an attacker. We remark how the goal of a malicious
user concerns de-anonymization rather than decrypting flowing packets.
Focusing on general issues is useful, but it is not sufficient to outline a
realistic threat.
In this section two types of attacker are analyzed: single-node attacker
and multi-node attacker. Both the models are interested in disclosing
the original IP address of the sender.

2.1.1 Single-Node Attacker

A single-node attacker owns a single Tor relay. He can be active and/or
passive, and while he can be part of our Tor circuit we also consider the
case in which he is the actual destination.
We assume, with no loss of realism, that TLS keys cannot be stolen,
and replay attacks are unfeasible. Such assumptions are motivated by
the fact that Tor periodically rotates TLS keys, and the replay of a
handshake between two Tor relays will result in a different negotiated
session key[3]. Furthermore, the hypothesis of an iterated compromise
attack is questionable. This type of attack consists of the compromission
(by system intrusion, legal coercion, or extralegal coercion) of the relays
that are part of our circuit. This threat is made unlikely by the fact that
Tor switches circuits every 10 minutes, so that it becomes unrealistic

14



to assume the malicious user has enough resources to perform such an
attack.
We identify four different scenarios:

• The attacker is a guard node: if end-to-end traffic is not encrypted
the attacker is able to read packets that are flowing back from
our target. This affects privacy, but it might lead to user de-
anonymization since network packets may contain user informa-
tion. The presence of a proxy between the crawler and the Tor
network mitigates the issue, as well as establishing a secure end-
to-end protocol.

• The attacker is an intermediate node: This is the worst case sce-
nario for the attacker. Being an intermediate relay means that, in
every case, traffic passing through us is encrypted by Tor (recall
"onion" encapsulation).

• The attacker is an exit node: this case is similar to the first one,
in which the attacker impersonates a guard node. If end-to-end
traffic is not encrypted he is able to sniff traffic going toward the
recipient.

• The attacker is the crawling target : obviously, the attacker is able
to decrypt our traffic. As long as it does not contain any informa-
tion regarding the crawler identity we are safe. Unless he is able
to monitor our crawler network adapter he is not able to correlate
and de-anonymize it.
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It is worth mentioning that traffic analysis techniques are quite in-
effective, unless the attacker is able to directly sniff incoming/outgoing
traffic to/from our crawler and the target.

2.1.2 Multi-Node Attacker

A multi-node attacker owns an arbitrary number of nodes, allowing him
to perform more complex attacks. A list of the most important attacks
are presented.

2.1.2.1 Malicious exit/guard nodes

Due to the fact that eventually a network packet must enter (exit) the
Tor network, one of the major issue regards who controls the guard (exit)
node. Assume that an attacker both owns a guard and an exit nodes.
If the end-to-end connection between Alice (our crawler) and Bob (our
target) is not encrypted the attacker may inject "tags" (e.g. an HTTP
tag/comment) inside the network packets that flow between Alice and
Bob. Exploiting this technique, the attacker may de-anonymize Alice
correlating the traffic that flows between the guard and the exit nodes
by means of the previously injected tags.
This issue can be mitigated forcing end-to-end encryption (TLS/SSL
or VPN) or checking integrity (hashes). However, since this might not
always be possible (e.g. Bob does not support secure protocols), a proxy
between Tor and Bob might be used.
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Another solution might be running a proxy as a bridge between Alice
and the Tor network.

2.1.2.2 Traffic Analysis

Recent researches point out how traffic analysis is a powerful tool which
can successfully lead to user de-anonymization. Several complex attacks
have been researched using this technique, and some of them have been
proved to be extremely effective[5][7]. Most of these kind of attacks
rely on traffic correlation and pattern analysis. Observing the flowing
encrypted data, an attacker owning a certain number of malicious nodes
may de-anonymize a particular user by observing data pattern.
In certain situations, the attacker might also overload certain nodes to
route Alice traffic toward nodes he owns.
Tor does not guarantee protection against end-to-end timing correlation.
Assuming the attacker is sniffing Alice and Bob at the same time, he
might be able to correlate traffic by observing request/response pattens.
The effectiveness of these kind of attacks highly depends on the amount
of resources owned by the attacker. Indeed, assuming the attacker owns a
high number of nodes in the network (i.e. Sybil attack), it becomes easier
to successfully identify traffic. To mitigate this problem, data pattern
must be concealed. In the specific case of a net crawler, a solution might
be to simulate a human-like traffic, adjusting packets flow in a proper
way. It is worth mentioning that Tor relays communicate exchanging
cells, which are fixed-size packets (512Kb).
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2.1.2.3 Sybil Attacks

In the case of an entity owning a significant number of relays, it might
be straightforward to successfully de-anonymize users. On July 4 2014
a cluster of nodes successfully delivered a Sybil attack:

"[...]they signed up around 115 fast non-exit relays, all running on 50.7.0.0/16
or 204.45.0.0/16. Together these relays summed to about 6.4% of the
Guard capacity in the network. Then, in part because of our current
guard rotation parameters, these relays became entry guards for a signif-
icant chunk of users over their five months of operation." [4]

Fortunately, the issue is mitigated by periodical monitoring of Tor net-
work. A service calledDocTor (https://gitweb.torproject.org/doctor.git)
is in charge of scanning the network, in order to identify potential ma-
licious relays. To further improve security, Tor automatically builds cir-
cuits choosing relays that are, as much as possible, geographically dis-
tant. Such a solution can be ineffective in the case of collaborating ISP’s
(or agencies) that take control of a certain number of Tor relays.
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2.2 Defending from Node Compromission

While it is important to take into account vulnerabilities of Tor archi-
tecture, we should also consider the possible compromission of a Tor
relay, or, in the worst case, of our Crawler/Proxy. Defending the con-
trollable perimeter should not be overlooked, since successful attacks to
our nodes might lead to the disclosure of our identity. Operating systems
like Tails [12] or Whonix [11] aim to avoid de-anonymization even if the
machine is compromised.
In particular, Whonix is characterized by an interesting design. As
shown in the figure, it is composed of two modular blocks: a Whonix-
Workstation and a Whonix-Gateway. While the former is the actual OS,
the latter specifies the network protocol used. As mentioned in the offi-
cial documentation:

"Whonix is divided into two parts: Whonix-Workstation for your work
and Whonix-Gateway for automatically routing all internet traffic through
Tor. This is security by isolation, and it averts many threats posed by
malware, misbehaving applications, and user error." [11]

Hence, it basically works enforcing all the traffic coming from the Work-
station to the Gateway, ensuring that no packets will flow using a differ-
ent network protocol.
As we will see, the structure of Whonix inspired the design of the archi-
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tecture presented in this thesis work.

Figure 2.3: Whonix
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While Whonix is thought to be installed on static machines, Tails is
thought to be portable:

"Tails is a live system that aims to preserve your privacy and anonymity.
It helps you to use the Internet anonymously and circumvent censorship
almost anywhere you go and on any computer but leaving no trace unless
you ask it to explicitly." [12]

As it will be discussed later, the software architecture developed for
this thesis it is designed to be resilient with respect to successful direct
attacks. However, one might decide to let it run on a Whonix or Tails
machine depending on the user needs.
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2.3 Hidden Services Vulnerabilities

A Hidden Service is a server which hosts web services within the Tor
network. It is uniquely identified by an alphanumeric hash ending with
.onion.
Now, assume Alice wants to connect to Bob’s hidden service. Both
parties want to stay anonymous and communicate in a secure way. It is
clear that Alice and Bob must talk in an indirect manner. Setting up
such a Tor circuit involves six steps:

• Prior to the actual communication, Bob chooses a set of introduc-
tion points (i.e. some Tor relays) and builds Tor circuits to them.

• In order to advertise his service, Bob communicates to the Direc-
tory Server (through a circuit) the information about it.

• Alice is now able to contact the directory server and gets the in-
formation about Bob’s hidden service. Furthermore, Alice picks
randomly a relay which will act as a "bridge" between her and
Bob. This relay is named rendezvous point. Alice shares a one-
time secret with the rendezvous point.

• Alice sends the one-time secret and the rendezvous address to Bob,
encrypting the message using Bob’s public key. Alice picks one
introduction point in order to indirectly send the message to Bob.
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• Bob connects to the rendezvous point providing the one-time se-
cret.

• Alice and Bob are now able to communicate through the ren-
dezvous point.

Since Alice and Bob communicate through a set of Tor relays, an
attacker might decide to subvert them in order to de-anonymize Alice
and/or Bob; therefore, we have to include the attacks against directory
server, introduction and rendezvous points in the definition of our threat
model. Several type of attacks are specified in the official design docu-
ment.
A sophisticated attack against Tor hidden services proposed by Kwon,
AlSabah, Lazar, Dacier, Devadas is based on traffic analysis[5]. Machine
learning algorithm have been used (support vector machine) to correlate
traffic and de-anonymize users. Important results have been achieved:

"We found that we can identify the users’ involvement with hidden ser-
vices with more than 98% true positive rate and less than 0.1% false
positive rate with the first attack, and 99% true positive rate and 0.07%
false positive rate with the second. [...] we show that we can correctly
determine which of the 50 monitored pages the client is visiting with 88%
true positive rate and false positive rate as low as 2.9%, and correctly
deanonymize 50 monitored hidden service servers with true positive rate
of 88% and false positive rate of 7.8% in an open world setting."
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Figure 2.4: Hidden Service

24



2.4 Tor Performance Evaluation

Due to Tor complexity, it comes natural to think about how performance
is affected by the high amount of overhead needed to handle the circuits.
A summary of [6] illustrates the main issues about Tor performance.
In the mentioned paper, six reasons for low performance have been iden-
tified:

• Tor flow control does not work properly, meaning that low-traffic
streams (as web browsing) does not co-exist well with high-traffic
ones (bulk transfers).

• Tor relays put too much traffic inside the network with respect to
the traffic they actually forward.

• Tor network capacity is not enough to guarantee anonymity to
current amount of users.

• Current path selection algorithms have to be improved, since some
relays are overloaded with respect to others that are underloaded.

• "Tor clients aren’t as good as they should be at handling high or
variable latency and connection failures. We need better heuristics
for clients to automatically shift away from bad circuits." [6]

• "[...]low-bandwidth users spend too much of their network overhead
downloading directory information." [6]
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Tor performance has an important impact on our crawler architecture,
since we have to know in advance how much if a certain crawling task
can or cannot be accomplished in a reasonable time.
As a first option an analytical approach has been considered to properly
model Tor performance (queueing theory), but due to the highly hetero-
geneous nature of Tor (being composed of very different type of relay
under a performance point of view), it would not have led to interesting
results.
At this point, the option to lead empirical tests directly on the Tor net-
work has been designed as the best hypothesis.

2.4.1 Tor Network Tests

A virtual machine from the University department has been set up to
download test files from a specific url. Tests have been organized in the
following way:

• For each day : execute tests at 10 a.m., 12 a.m., 2 p.m, 4 p.m

• For each test :

– Download 1 Kb test file using / without using Tor

– Download 1 Mb test file using / without using Tor

– Download 10 Mb test file using / without using Tor

• Repeat for 4 consecutive days
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Figure 2.5: Bandwidth Test - Day 1 - Average and Standard Deviation

The tests surprisingly led to interesting results. As one may notice
from the picture, there are no substantial differences when downloading
small sized data, while the Tor overhead has a noticeable impact on data
of higher dimensions. For completeness, the average bandwidth and the
standard deviation is shown, to remark the performance loss when using
Tor. In the appendix, it is possible to assess how all the test results look
very similar across the different days.

It is worth to underline how the packet loss measurement has been omit-
ted, since it did not give useful information (always 0%). The obtained
results had a remarkable impact on the design of our software architec-
ture: as mentioned before, we designed the crawler to work on a virtual
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machine that is, basically, a proxy. To further increase anonymity, one
might want to deliver tasks to it passing through an anonymous network
(i.e. Tor), thus it becomes crucial to have a clear picture of how per-
formance are affected. Indeed, how we will see in the next section, the
design of our crawler takes into account these results.
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Chapter 3

Architecture and Web
Crawling

One of the most important aspect of writing a web crawler, concerns the
anonymity of the crawler itself. While it might be easy to accomplish
this relying on anonymizing network (e.g. Tor) it might not be as easier
to protect the source identity when a crawler is compromised by an at-
tacker. A simple attempt to solve this issue is to set the crawler as an
external proxy, sending tasks to it covering the original source ip.
However, it is interesting to face another important issue: what if we
want our crawler to be more resilient with respect to active attacks by
hiding the crawling tasks we set from a remote position? In this case,
we need to design a software architecture that has no "memory" about
the work it does.
Another aspect the architectures aims to face is purely technical: we
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want the crawler to be technology-agnostic, in such a way it can per-
form whatever type of task regardless the programming language or en-
vironment. Furthermore, we want to have the possibility to specify the
network protocol to use for every single task. For instance, we would
like to execute two tasks that contain the same crawling logic but dif-
ferent network specifications (e.g. crawl the target passing through Tor).

To summarize, the architecture aims to reach the following goals:

• Hide the task-provider source ip

• Avoid the disclosure of the tasks even in case of crawler compro-
mission

• Allow the crawler to perform every kind of task (whatever technol-
ogy)

• Realize a modular architecture, to decouple the crawling logic from
the network transmission protocol.
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3.1 Design

Figure 3.1: Architecture Overview

In order to realize a modular and flexible architecture, Docker is used.
Docker runs as a middleware between the applications and the operating
system, and offers the possibility to create lightweight virtual machines
(called containers) on the fly.
As the Docker website states:

"Docker containers wrap up a piece of software in a complete filesystem
that contains everything it needs to run: code, runtime, system tools,
system libraries – anything you can install on a server. This guarantees
that it will always run the same, regardless of the environment it is run-
ning in."

A container is created building a dockerfile, which contains the con-
figuration needed to launch it. In the dockerfile it is possible to specify
the container image (e.g. ubuntu) and a set of scripts needed to set
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it up properly. Docker implements its own caching logic to avoid re-
downloading container images. This is a positive aspect with respect to
performance evaluation, since we can avoid sending the whole container
to the crawler (which would result in a huge throughput bottleneck).

In order to launch the machine, we need to provide the following
objects:

• Crawling logic container (dockerfile + scripts)

• Gateway logic container (dockerfile + scripts)

• Input files

It can be easily guessed that the logic container is in charge to perform
the crawling logic, routing every packet to the gateway container, which
implements the network logic to reach the crawling target.
Once all items are received, a software service running on the machine
starts a controller that builds the containers and starts the crawling task.
As soon as the crawling operation starts and the containers are set up,
all the received files are removed from the disk, this is done to prevent
an attacker from analyzing the crawling tasks. It could be also possible
to encrypt the sftp folder, to further increase the security.
Once both the logic and the gateway containers are successfully built,
the former forwards all of its packet toward the gateway container, that
in turn forwards the packets toward the crawling target according to its
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implementation.
The task output is then moved into the sftp folder, ready to be retrieved.
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3.2 Task Execution Pipeline

The following steps are executed:

1. Crawling task delivery through SFTP

2. Controller execution and clean-up

3. Task execution

4. Output production

3.2.1 SFTP Input Delivery

The task files (dockerfiles and input scripts) are delivered using SFTP
into a folder named sftp. It is important to remark that it is possible to
access the machine from a remote position using Tor in order to increase
our anonymity.
It is also worth to mention that the input files can be delivered taking
advance of an anonymizing network like Tor.

3.2.2 Controller Execution and Clean-Up

Once all files are delivered, a script named controller, running as a back-
ground service, automatically checks if an empty file named done is
present before starting the crawling task. The reason behind this is
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to avoid running a task with incomplete input.
A script called executor is in charge to accomplish the following steps:

• Building the logic and the gateway containers by means of the
dockerfiles.

• Starting the containers and linking them.

• Cleaning up the received input files to be more resilient with re-
spect to active attacks.

• Producing the output.

3.2.3 Task Execution

The crawling logic is performed by the logic docker container. To avoid
any kind of network leak the default gateway of the logic container is
changed, in order to forward all of its packets through the gateway con-
tainer. Being a fundamental step, it is forced by our controller.

3.2.4 Output Production

Once the task is completed, the executor stops the containers and remove
their images from the docker local repository. This is done to remove
any clear evidence of the completed task. The output is placed in the
sftp folder, ready to be retrieved remotely.
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For further information about the implementation, refer to the appendix
at the end of this document.
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Chapter 4

Validation

This chapter aims to show how the proposed architecture has been tested,
illustrating the technical details needed to comprehend its functioning.
The software has been primarily tested on a CentOS virtual machine,
however, thanks to Docker portability, it runs on any other platform
supporting Docker. It is worth mentioning that it has also been tested
on a Ubuntu virtual machine without any modification.
The main difficulty encountered lies in defining a communication stan-
dard between the logic and the gateway containers. Indeed, it is impor-
tant to underline that the logic container is not aware about the actual
implementation of the gateway, since it might not always be the same
due to the modularity constraint we set from the beginning.
Recalling the fact that a Docker container is, in effect, a virtual machine,
it has its own IP address. Thanks to the capability of Docker of linking
two containers, it is possible to let them communicate as if they are on
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the same network. Therefore, we have the following scenario:

• Logic container needs to forward all traffic to the gateway in order
to reach its final destination.

• Gateway container acts as a proxy, listening on a set of pre-defined
ports.

It is crucial that the ports exposed by the gateway are always the
same, since the logic has to know where to send its traffic. Before ex-
plaining exactly what ports to expose, we first illustrate how the gateway
is implemented, and what kind of traffic it expects to forward.
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4.1 Gateway Container

To validate the architecture, three gateway containers have been designed
and realized:

• Pass-through: forward packets directly to the crawling target

• Tor : forwards packets through the Tor network

• VPN : forwards packets using a VPN

They coincide with the three main types of useful proxies for a web
crawler. Indeed, depending by the requirements, a configuration might
suit better with respect to the others.

The pass-through gateway acts as an elementary proxy, forwarding
all the incoming traffic from the logic container to the crawling target. It
has been implemented building a Docker container which installs Squid
in order to improve performance:

"Squid is a caching and forwarding web proxy. It has a wide vari-
ety of uses, from speeding up a web server by caching repeated requests;
to caching web, DNS and other computer network lookups for a group
of people sharing network resources; to aiding security by filtering traf-
fic. Although primarily used for HTTP and FTP, Squid includes limited
support for several other protocols including TLS, SSL, Internet Gopher
and HTTPS." [9]
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The Tor gateway pulls an image from the Docker Hub called torprivoxy
(arulrajnet/torprivoxy) which natively exposes three ports:

• 9050 : for socks5 traffic

• 8118 : for http traffic

• 9051 : to control Tor behavior (e.g. switch Tor circuit)

Being Tor built on top of the socks5 protocol, it might be handy
for our architecture to support socks5 traffic. As we will see later, it
is possible to launch a task choosing the desired gateway port (i.e. the
gateway protocol). Therefore, according to this standard, port 8118 has
been set, by design, as the default http port to forward traffic through
the gateway container.

The VPN gateway container features a Squid proxy and Openvpn.
For validation purposes, a free VPN service has been used.

Before introducing the validation tests, a technical overview of the
logic container will follow.
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4.2 Logic Container

As already mentioned, the logic container is in charge to execute the
crawling task. Two tasks are executed for validation purposes:

• A curl command to get the machine public ip

• A scrapy script to execute a realistic crawling task

We are interested in knowing the public ip to check the difference
between the different gateway types available. Indeed, we expect three
different ip’s for each gateway, witnessing the correct functioning of the
architecture.

The second task involves one of the most used web crawling frame-
works, Scrapy :

"Scrapy is an application framework for crawling web sites and ex-
tracting structured data which can be used for a wide range of use-
ful applications, like data mining, information processing or historical
archival. Even though Scrapy was originally designed for web scraping,
it can also be used to extract data using AVPIs (such as Amazon Asso-
ciates Web Services) or as a general purpose web crawler." [10]

The reason behind such choice, is to report a log file which is a re-
sult of an actual crawling task, effectively showing how the architecture

41



performs in a realistic scenario. In particular, a crawling task targeting
stackoverflow.com has been executed, retrieving a list of the most up-
voted questions on the renowned website.

Once again, the logic container communicates with the gateway by
means of ports 8118 and 9050.
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4.3 Validation Objectives

The validation tests have been executed according to the following cri-
teria:

• Verify the correct functioning of each gateway type, providing the
logs produced by the scrapy script and checking the public ip’s for
each gateway type.

• Assert the absence of any network leak

It is worth to mark the importance of the second point: we want
the logic container to forward all traffic through the gateway, no pack-
ets must be forwarded directly from the logic container to the crawling
target. To accomplish this, the executor launches the logic container
modifying the default gateway, so that no packet is able to reach the
Docker network adapter and, eventually, the crawling target.
For validation purposes, tcpdump is used. As its name suggests, tcpdump
prints out a description of the contents of packets on a network interface
that match a certain boolean expression. In particular, a packets dump
on port 53 of the docker interface (docker0 ) will be reported, showing
how no DNS leaks are present.
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4.4 Validation Results

The following steps are followed in order to test the architecture:

• Public ip address verification (pass-through, tor, vpn)

• Crawling task output verification

• Tcpdump leaks test

Note: only the output is reported, for an exhaustive guide on how to
correctly setup and launch the architecture please refer to the appropri-
ate section in the appendix.

The first step is to check the ip returned by querying checkip.dyndns.org
using all the three gateway types. Obviously, we expect to have three
different ip addresses.
Using the pass-through configuration, we obtain the following ip address:

8 7 . 1 6 . 2 37 . 4 8

For the gateway implementing Tor proxy:

109 . 163 . 234 . 5
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One might verify how the returned ip is associated to a german ISP.
Lastly, the output for the gateway implementing a vpn client:

176 . 126 . 237 . 217

In this case we got a romanian ip. Therefore, we have the confirmation
that everything works properly.

To witness the correct functioning of the Scrapy script, the header of
the output coming from the crawling task is reported:

2016−05−09 18 : 41 : 51 [ scrapy ] INFO: Scrapy 1 . 0 . 6
s t a r t ed ( bot : scrapybot )
2016−05−09 18 : 41 : 51 [ scrapy ] INFO: Optional f e a t u r e s
a v a i l a b l e : s s l , http11
2016−05−09 18 : 41 : 51 [ scrapy ] INFO: Overridden
s e t t i n g s : { 'FEED_FORMAT' : ' j son ' , 'FEED_URI ' :
'/ shared / sp id e r . json '}
2016−05−09 18 : 41 : 51 [ scrapy ] INFO: Enabled
ex t en s i on s : CloseSpider , FeedExporter ,
TelnetConsole , LogStats , CoreStats , Sp ide rSta te
2016−05−09 18 : 41 : 51 [ scrapy ] INFO:
Enabled downloader middlewares :
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HttpAuthMiddleware , DownloadTimeoutMiddleware ,
UserAgentMiddleware , RetryMiddleware ,
DefaultHeadersMiddleware , MetaRefreshMiddleware ,
HttpCompressionMiddleware , RedirectMiddleware ,
CookiesMiddleware , HttpProxyMiddleware ,
ChunkedTransferMiddleware , DownloaderStats
2016−05−09 18 : 41 : 51 [ scrapy ] INFO: Enabled
sp id e r middlewares : HttpErrorMiddleware ,
Of f s i teMiddleware , RefererMiddleware ,
UrlLengthMiddleware , DepthMiddleware
2016−05−09 18 : 41 : 51 [ scrapy ] INFO:
Enabled item p i p e l i n e s :
2016−05−09 18 : 41 : 51 [ scrapy ] INFO:
Spider opened
2016−05−09 18 : 41 : 51 [ scrapy ] INFO:
Crawled 0 pages ( at 0 pages /min ) ,
scraped 0 items ( at 0 items /min )
2016−05−09 18 : 41 : 51 [ scrapy ] DEBUG:
Telnet conso l e l i s t e n i n g on 1 2 7 . 0 . 0 . 1 : 6 0 2 3
2016−05−09 18 : 41 : 51 [ scrapy ] DEBUG:
Crawled (200)
<GET http :// s tackove r f l ow . com/ que s t i on s ? s o r t=votes>
( r e f e r e r : None )
2016−05−09 18 : 41 : 52 [ scrapy ] DEBUG:
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Crawled (200)
<GET http :// s tackove r f l ow . com/ que s t i on s /11227809/
why−i s−proce s s ing−a−sorted−array−f a s t e r−
than−an−unsorted−array> ( r e f e r e r :
http :// s tackove r f l ow . com/ que s t i on s ? s o r t=votes )
2016−05−09 18 : 41 : 52 [ scrapy ] DEBUG:
Scraped from <200 http :// s tackove r f l ow . com
/ que s t i on s /11227809/
why−i s−proce s s ing−a−sorted−array−f a s t e r−
than−an−unsorted−array>
{ . . RESPONSE BODY . . }

Clearly, the output reports a 200 http code to confirm that the crawling
task was successful. Obviously, the output is exactly the same for each
gateway type.

The last test aims to show how the architecture forwards each packet
through the gateway: we expect that tcpdump shows DNS requests when
using a pass-through gateway, while no logs are supposed to be shown
when using a Tor or a VPN container. Indeed, in the last two cases, all
the traffic is never directly routed to the crawling target.
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Figure 4.1: DNS Leak Test: Pass-through Gateway
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Figure 4.2: DNS Leak Test: Tor Gateway
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Figure 4.3: DNS Leak Test: VPN Gateway
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As it possible to notice from the pictures, the results are clear: no
DNS requests are captured from tcpdump when using the Tor and the
VPN gateways. On the contrary, this is not true for the pass-through
gateway.
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4.5 Conclusions and Future Work

Being an experimental software architecture, it is worth to underline its
main current limitations:

• There is a time window in which the task input is actually visi-
ble. Assuming the presence of an active attacker monitoring the
crawler, it might be possible for him to analyze the crawling input
before the controller is launched. The issue can be solved encrypt-
ing the sftp folder.

• Serial tasks processing. The actual architecture does not provide
the possibility to parallelize the execution of multiple tasks. A
software hypervisor might be necessary to handle multiple requests,
reorganizing the pipeline structure.

• Source ip discovery. Assuming we are reaching the sftp folder with-
out relying on an anonymizing network, it might be possible for an
attacker who has already compromised our crawler to discover our
source ip. An effective way to solve this issue is to use anonymous
operating systems such as Whonix [11] or Tails [12].

In order to improve the architecture, a list of features are proposed:

• Creating a repository of Logic and Gateway containers. Thanks to
the modularity and flexibility offered by the design of this thesis
work, it might be interesting and useful to have a repository of
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containers, ready to be plugged in. Indeed, one of the most impor-
tant issue for a web crawler concerns the need to receive frequent
updates. A centralized repository allows to maintain and update
the containers efficiently

• Batch tasks processing. While task parallelization has been re-
ported as one of the main limitations, it might be handy to allow
the system to enqueue multiple tasks for batch processing. Such
feature might be enabled configuring the Controller module.

• Temporary or persistent storage. To keep the system anonymous,
the architecture automatically deletes container images and input
scripts. However, there could be situations in which the anonymity
hypothesis can be relaxed in favor of better performance. Under
these circumstances, it would be convenient to have the system
accepting a configuration file as input, letting the user specifying
whether if the input has to be stored (optionally specifying a time-
to-live) or not.
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Appendix A

Architecture: Technical
Guide

This chapter illustrates how to interact with the architecture step by
step, showing how the validation test has been executed. These are the
steps needed to correctly deploy the virtual machine and launching a
crawling task:

• Virtual Machine (CentOS) deployment and sftp/ssh setup

• Start background service

• Input delivery

• Output retrieval

To add a further level of obfuscation, a section on how to access the
architecture through Tor is reported at the end.
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A.1 Architecture Deployment

As already mentioned, the architecture has been tested on a CentOS vir-
tual machine. Virtualbox has been used to accomplish this. In order to
have our machine reachable from sftp/ssh, we need to setup two network
adapters, as shown in the pictures.

Figure A.1: Virtual Machine setup: network adapter 1
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Figure A.2: Virtual Machine setup: network adapter 2
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By default, sftp and ssh daemons are launched at startup, therefore
we can connect to the virtual machine using:

s f t p root@<ip_address>

Or:

ssh root@<ip_address>
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A.2 Start Background Service

Using ssh, we are able to start the virtual machine controller as shown in
the picture. The controller is now waiting for the input to be delivered,
once it finds the file done in the sftp folder, it launches executor.sh which
is in charge to build the dockerfiles and launch the input task.

Figure A.3: Virtual Machine setup: starting background service
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A.3 Input Delivery

Now, using sftp or ssh we can deliver the following items:

• Gateway container

• Logic container

• Input files

• "done" file

The pictures clearly shows how to accomplish this procedure. In
figure A.4 we can see how the input files are delivered. Only after this
has been accomplished it is possible to deliver the done file, since we
have to be sure that all the files have been successfully delivered before
starting the task. Figure A.5 shows the creation of the done file on the
virtual machine, while figure A.6 shows that the crawling task has been
successfully launched.
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Figure A.4: Virtual Machine setup: input files delivery
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Figure A.5: Virtual Machine setup: delivery of "done" file
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Figure A.6: Virtual Machine setup: crawling task running
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A.3.1 Output Retrieval

It is now possible to retrieve the output directly from the sftp folder.
This step is shown in figure A.7 using scp.

Figure A.7: Virtual Machine setup: output retrieval
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A.4 Accessing the VM through Tor

Assuming we want to connect to our architecture from an Ubuntu ma-
chine (the operations for a different distribution are very similar), the
first step is to download Privoxy :

"Privoxy is a non-caching web proxy with advanced filtering capabili-
ties for enhancing privacy, modifying web page data and HTTP headers,
controlling access, and removing ads and other obnoxious Internet junk.
Privoxy has a flexible configuration and can be customized to suit indi-
vidual needs and tastes. It has application for both stand-alone systems
and multi-user networks." [13]

So, in our terminal

sudo apt−get update && sudo apt−get i n s t a l l pr ivoxy

Now, we start it (init.d):

sudo / e tc / i n i t . d/ pr ivoxy s t a r t

Or (systemd):

sudo s e r v i c e pr ivoxy s t a r t
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By default, Privoxy listens on port 8118, therefore we launch ssh with
the following options:

ssh −L 8118 : l o c a l h o s t :8118 <username>@<ip_address>

65



A.5 Architecture: Organization

The architecture has the following structure:

Arch
sftp

logic
Dockerfile
scripts

gateway
Dockerfile
scripts

input
controller

controller.sh
executor.sh

shared

• sftp: folder accessible from a remote position, used to pass the
containers and the tasks to be executed by the crawler. This folder
content is removed as soon as the crawling task is launched.

– logic: contains the dockerfile and the scripts needed to set the
logic container up.

– gateway : contains the dockerfile and the scripts needed to set
the gateway container up.

– input : contains the task logic to be launched by the crawler.
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• controller : folder containing the scripts needed to transparently
launch the crawling task as soon as they arrive.

– controller.sh: the daemon which continuously monitors the
sftp folder waiting for a task to arrive.

– executor.sh: launched by controller.sh, this script is in charge
to launch the crawling task and produce the output.

• shared : shared folder between the host machine and the containers.
Reserved to the system.
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Appendix B

Architecture: Scripts

Controller code (to be launched with root privileges):

#!/bin /bash

# Check i f a l l f i l e s are in " shared " f o l d e r
# and launch executor . sh
s f tp_di r=/home/mike/docker / s f t p
done_f i l e=/home/mike/docker / s f t p /done
l o g i c_ f o l d e r=/home/mike/ docker / s f t p / l o g i c
gateway_folder=/home/mike/docker / s f t p /gateway
input_fo lder=/home/mike/docker / s f t p / input
executor_sh=/home/mike/docker / c o n t r o l l e r / executor . sh
whi l e t rue
do
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f o r entry in " $s f tp_di r "/∗
do

# As soon as the con f i rmat ion f i l e a r r i v e s ,
# launch executor . sh , then d e l e t e input f i l e s
# in s f t p f o l d e r
i f [ " $entry " = " $done_f i l e " ] ; then

sh "$executor_sh"

# Delete input f i l e s
rm −r f " $ l o g i c_ f o l d e r "
rm −r f " $gateway_folder "
rm −r f " $ input_fo lder "
rm " $done_f i l e "

f i
done

done

Executor code:

#!/bin /bash

l o g i c_ f o l d e r=/home/mike/ docker / shared / l o g i c
gateway_folder=/home/mike/docker / shared /gateway
input_fo lder=/home/mike/docker / shared / input
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# Get Input
cp −a /home/mike/ docker / s f t p / l o g i c

/home/mike/docker / shared
cp −a /home/mike/ docker / s f t p /gateway

/home/mike/docker / shared
cp −a /home/mike/ docker / s f t p / input

/home/mike/docker / shared

# Run Dock e r f i l e s
docker bu i ld −t arch / l o g i c

/home/mike/docker / shared / l o g i c /
docker bu i ld −t arch /gateway

/home/mike/docker / shared /gateway/

# Launch Gateway ( in background )
docker run −i t d −−p r i v i l e g e d −−name gateway
arch /gateway
bash −c "sudo i p t a b l e s −t nat −A POSTROUTING −o eth0
−j MASQUERADE; bash"

# Launch Logic Container
docker run −−p r i v i l e g e d −−rm −−l i n k gateway
−−name l o g i c
−v /home/mike/docker / shared / input : / shared arch / l o g i c
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bash −c " route de l d e f au l t ; route add de f au l t gw
gateway eth0 ; sudo sh s c r i p t s / s c r i p t . sh"

# K i l l Gateway
docker stop gateway
docker rm gateway

# Remove images
docker rmi arch /gateway
docker rmi arch / l o g i c

# Produce output
mv /home/mike/ docker / shared / input /∗

/home/mike/docker / s f t p

# Remove input f i l e s
rm −r f " $ l o g i c_ f o l d e r "
rm −r f " $gateway_folder "
rm −r f " $ input_fo lder "

Logic container Dockerfile:

FROM ubuntu : l a t e s t
RUN apt−get −y update && apt−get i n s t a l l −y ping
COPY s c r i p t s / s c r i p t s
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Gateway container Dockerfile:

FROM ubuntu : l a t e s t
RUN apt−get −y update && apt−get i n s t a l l −y i p t a b l e s
COPY s c r i p t s / s c r i p t s
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B.1 Network Tests: Scripts

#!/bin /bash
# Run with sudo !

array=( http :// spe ed t e s t . f t p . o tenet . gr / f i l e s /
te s t100k . db
http :// spe ed t e s t . f t p . o tenet . gr / f i l e s / test1Mb . db
http :// spe ed t e s t . f t p . o tenet . gr / f i l e s / test10Mb . db )

# Test ing Open Targets without Tor
echo Test ing Without Tor :
f o r var in 0 1 2 3 4 5 6 7 8 9
do

echo I t e r a t i o n $var

echo Packet Loss : sp e ed t e s t . f t p . o tenet . gr
ping −q −n −c 10 spe ed t e s t . f t p . o tenet . gr |
grep "packet l o s s " | cut −d " " −f 6

f o r i in "${ array [@]}"
do

echo Bandwidth : $ i
wget −O /dev/ nu l l $ i 2>&1 | grep −o "[0−9.]\+
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[KM]∗B/ s "

echo Latency : $ i
time wget −q −O /dev/ nu l l $ i 2>&1 | grep
e lapsed
echo \n\n

done

echo S l e ep ing 6 minutes
s l e e p 6m

done

# Test ing Open Targets through Tor
echo Test ing With Tor
f o r var in 0 1 2 3 4 5 6 7 8 9
do
echo I t e r a t i o n $var

echo Packet Loss : sp e ed t e s t . f t p . o tenet . gr
( proxychains ping −q −n −c 10 spe ed t e s t . f t p .
o tenet . gr )
| grep "packet l o s s " | cut −d " " −f 6

f o r i in "${ array [@]}"
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do
echo Bandwidth : $ i
( proxychains wget −O /dev/ nu l l $ i ) 2>&1
| grep −o "[0−9.]\+ [KM]∗B/ s "

echo Latency : $ i
( proxychains time wget −q −O /dev/ nu l l $ i )
2>&1 | grep e lapsed
echo \n\n

done

echo S l e ep ing 6 minutes
s l e e p 6m

done
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Appendix C

Network Tests: Diagrams
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Figure C.1: Bandwidth Test - Day 1 - 10 a.m.
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Figure C.2: Bandwidth Test - Day 1 - 12 a.m.
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Figure C.3: Bandwidth Test - Day 1 - 14 p.m.
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Figure C.4: Bandwidth Test - Day 1 - 16 p.m.
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Figure C.5: Bandwidth Test - Day 1 - Average and Standard Deviation
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Figure C.6: Bandwidth Test - Day 2 - 10 a.m.
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Figure C.7: Bandwidth Test - Day 2 - 12 a.m.
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Figure C.8: Bandwidth Test - Day 2 - 14 p.m.
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Figure C.9: Bandwidth Test - Day 2 - 16 p.m.
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Figure C.10: Bandwidth Test - Day 2 - Average and Standard Deviation
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Figure C.11: Bandwidth Test - Day 3 - 10 a.m.
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Figure C.12: Bandwidth Test - Day 3 - 12 a.m.

88



Figure C.13: Bandwidth Test - Day 3 - 14 p.m.
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Figure C.14: Bandwidth Test - Day 3 - 16 p.m.
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Figure C.15: Bandwidth Test - Day 3 - Average and Standard Deviation
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Figure C.16: Bandwidth Test - Day 4 - 10 a.m.
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Figure C.17: Bandwidth Test - Day 4 - 12 a.m.
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Figure C.18: Bandwidth Test - Day 4 - 14 p.m.
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Figure C.19: Bandwidth Test - Day 4 - 16 p.m.
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Figure C.20: Bandwidth Test - Day 4 - Average and Standard Deviation
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